

National Training

on QUALITY SEED PRODUCTION OF OILSEED & PULSES (December 12-16, 2022)

Training Manual

Organized by:

Government of India Ministry of Agriculture & Farmers Welfare Department of Agriculture & Farmers Welfare

NATIONAL TRAINING ON QUALITY SEED PRODUCTION OF OILSEEDS & PULSES (DECEMBER 12-16, 2022)

Course Director

Sh. Manoj Kumar, IAS Director

Training Coordinators

Mr. Anil Varma Nalla Junior Seed Analyst **Dr. A K Verma** Senior Seed Analyst

Organized by:

Government of India Ministry of Agriculture& Farmers Welfare Department of Agriculture & Farmers Welfare

NATIONAL SEED RESEARCH AND TRAINING CENTRE

VARANASI-221106 (UTTAR PRADESH) Tel: 0542-2370222, Fax: 0542-2370298

> E-mail: dir-nstrtc-up@nic.in Website: www.nsrtc.nic.in

Publication No. NSRTC/2022/008

NATIONAL TRAINING ON QUALITY SEED PRODUCTION OF OILSEEDS & PULSES (DECEMBER 12-16, 2022)

Compiled & Edited by:

Dr. A. K. Verma, Senior Seed Analyst Mr. Anil Varma Nalla, Junior Seed Analyst Er. M. K. Vishwakarma, Seed Processing Engineer Mrs. Ekta Kumari, Senior Seed Analyst Mr. Javesh Kumar, Junior Seed Analyst

NATIONAL SEED RESEARCH AND TRAINING CENTRE VARANASI-221 106 (UTTAR PRADESH)

भारत सरकार राष्ट्रीय बीज अनुसंधान एवं प्रशिक्षण केन्द्र कृषि एवं किसान कल्याण मंत्रालय कृषि एवं किसान कल्याण विभाग जी.टी. रोड, कलेक्ट्री फार्म, पोस्ट ऑफिस इण्डस्ट्रियल इस्टेट, वाराणसी 221106 (उ.प्र.)

GOVERNMENT OF INDIA NATIONAL SEED RESEARCH & TRAINING CENTRE

Ministry of Agriculture & Farmers Welfare Deptt. of Agriculture & Farmers Welfare G.T. Road, Collectry Farm, P.O. Industrial Estate, Varanasi-221106 (U. P.)

FOREWORD

In India, oilseeds and pulses are the important crops, next to Cereals. At present, India imports over 2.69 million tonnes of pulses and about 14 million tonnes of vegetable oils (comprising of edible and non-edible oils) every year to meet the domestic demand. There is a need to increase the production and productivity of oilseeds & pulses to cater the demand of the increasing population of the country and also need to focus on target to double the income of farmers. The most important factor for increasing yields of oilseeds & pulses is to make available high quality seeds to the farming community.

The Government of India, Ministry of Agriculture & Farmers Welfare, DA & FW is giving more emphasis to ensure the supply and distribution of high Quality seeds to the farming community. Keeping in view, I am happy to say that National Seed Research and Training Centre, Varanasi has organized five days National Training course on "Quality Seed Production of Oilseeds & Pulses" during December 12-16, 2022.

The prime objective of this National Training is to enhance the knowledge of the human resources engaged from seed industry in various aspects of seed production, seed processing, seed testing, seed storage, seed distribution and quality regulation of oilseeds & pulse crops across the country.

This training module consists of valuable information and covers almost all important oil seed and pulses crops on various aspects of quality seed production and seed quality regulation. I hope this compilation will serve as a useful ready reference to all concerned.

Date : 30 .11.2022 Place : Varanasi (U.P.)

(Manoj Kumar

National Training on

QUALITY SEED PRODUCTION OF OILSEEDS & PULSES

(DECEMBER 12 - 16, 2022)

CONTENTS

Sl.No.	торіс		Page No.
1.	NSRTC : An Overview	– Sh. Manoj Kumar	01 - 03
2.	Post-Harvest Management for Seed Quality Assurance in Oilseeds & Pulses Cr	rops – Dr. Dr. S.K. Goyal	04 - 19
3.	Management of Major Diseases in Oilseeds and Pulses Crops	– Dr. J.P. Rai	20 - 34
4.	Hybrid Seed Production Technology of Sunflower (Helianthus Annuus)	– Dr. Mahak Singh	35 - 39
5.	Quality Seed Production Technology in Indian Mustard	– Dr. Mahak Singh	40 - 42
6.	Management of major insect pests of Oil seeds and Pulses	– Dr. Srinivasa N	43 - 50
7.	Seed Production in Cowpea (Vigna unguiculata L.)	– Dr. B. Rajasekhar Reddy	51 - 55
8.	Seed Production in French bean (Phaseolus Vulgaris L.)	– Dr. B. Rajasekhar Reddy	56 - 58
9.	Seed Production in Pea (Garden pea and field pea)	– Dr. B. Rajasekhar Reddy	59 - 61
10.	Quality Seed Production Technology in Groundnut	– Dr. Amrit Lal Singh	62 - 79
11.	Factors affecting Seed Quality during production of Oil Seeds & Pulse Crops	– Dr. C.P. Sachan	80 - 84
12.	Hybrid Seed Production Technology in Pigeon pea Cajanus cajan (L.)	– Dr. C.P. Sachan	85 - 88
13.	Quality Seed Production Technology in Bengal Gram	– Prof. J. P. Lal	8 9 - 92
14.	Quality seed production in Blackgram and Greengram	– Dr. Aditya Pratap	93 - 100
15.	Hybrid Seed Production Technology in Castor	– Dr. Manimurugan C.	101 - 105
16.	Quality seed production in Horsegram and Mothbean	– Dr. Aditya Pratap	106 - 113
17.	Quality Seed Production Technology in Linseed	– Dr. C.P. Sachan	114 - 116
18.	Quality Seed Production Technology in Lentil	– Prof. J. P. Lal	117 - 118
19.	Quality seed production technology in Niger, Safflower and Sesame	– Dr. Manimurugan C.	119 - 130
20.	Management of Seed Storage with Special Reference to Oilseeds & Pulses See	ds -Er. M.K. Vishwakarma	131 - 134

NSRTC at a glance.....

National Seed Research and Training Centre (NSRTC), Varanasi established under Govt. of India, Ministry of Agriculture & Farmers Welfare, Department of Agriculture and Farmers Welfare, during October 2005.

The prime objective of establishment NSRTC is to have a separate National Seed Quality Control Laboratory, which is serving as **Central Seed Testing Laboratory (CSTL)** as well as to act as **Referral laboratory** for hon'ble court of the entire country.

Further, this **CSTL** has to coordinate and monitor the functioning of all the **notified State Seed Testing Laboratories** presently available in our country in order to obtain Uniformity in Seed quality Regulation at National level.

More importantly for facilitating International seed Movement, our CSTL the member laboratory of International Seed Testing Association (ISTA), ZURICH, Switzerland and expected to become accreditated Laboratory very soon and thereafter will be eligible for issuing International seed movement certificates on behalf of Government of India.

NSRTC is the National Centre for Training Human resources for the officials who are all involved in the Seed Quality Control, Seed Law Enforcement and stake holders of Seed Industry.

In order to fulfill the mandate, NSRTC organize National trainings, workshops, National seed congress for the benefit of personnel involved in seed development and quality control programme and stakeholders of seed industry for updating their knowledge and skills.

The NSRTC is situated under greater periphery of the Holy city Varanasi, which is located 7 KM away from heart of city towards south – west on Varanasi - Allahabad GT road, Collectry farm, surrounded by Banaras Hindu University (6 km), Indian Institute of Vegetable Research (20kms) and well linked by Air, Train and Road.

PRIME OBJECTIVES:

- To have a separate National Seed Quality Control Laboratory, which is serving as **Central Seed Testing Laboratory (CSTL)**.
- To act as **Referral laboratory** for hon'ble court for the entire country w.e.f 1.4.2007 onwards.
- Member laboratory of International Seed Testing Association (ISTA), Switzerland,
- Center for testing all transgenic crop seeds etc., in future
- **To organize National and International seed related conferences, symposium and trainings** for the benefit of personnel who are involved in seed development and quality control programme and stakeholders of seed industry.
- Centre for training human resource on all seed related aspects.

VISION:

Our vision is to

- Contribute integrated approach towards quality seed availability.
- Have separate National Seed Quality Control Laboratory as CSTL.
- Maintain uniformity in seed testing and seed quality control at National level.
- Make Seed Industry in India globally competitive.

1

MISSION:

Our mission is to lead and engage in downstream programmes on Seed Science and Quality Control to disseminate the values of seed production and availability of quality seed to the need of National and International seed community.

STRATEGY:

NSRTC pursues its Mission and Goals through:

- Integrated approach and system –based programs on seed quality control and act as Referral Lab for the hon'ble Court.
- Strengthening Seed Technological Research in seed production disciplines of major crops.
- Total seed quality management through systemic seed certification and law enforcement process.
- Interaction with stake holders of seed industry, officials of seed certification and law enforcement, seed producers and other seed organizations that share's NSRTC mission.
- Continued efforts in improving / updating knowledge and skill of human resources involved in seed certification and quality control as a training human resource on all seed related aspects
- In order to meet out these vision and missions strategy the NSRTC is housed in a modern building with all latest infrastructural facilities, equipments and machineries, excellent conference/ seminar hall, workshop /class rooms, exclusive ISTA member laboratories, museum, well stocked library.

Staff strength:

The Ministry of Finance sanctioned of 23 posts for National Seed Research and Training Centre, Varanasi for making the centre functional so as to meet out the mandate. The sanctioned staff strength is as follows:

S.No.	Name of Post	Staff strength
1.	Director	1
2.	Chief Seed Analyst	1
3.	Seed Processing Engineer	1
4.	Seed Technologist	3
5.	Sr. Seed Analyst	2
6.	Administrative/Accounts Officer	1
7.	Jr. Seed Analyst	5
8.	Private Secretary	1
9.	Stenographer	2
10.	Librarian	1
11.	Assistant (Administration/ Accounts)	1
12.	Caretaker cum Storekeeper	1
13.	Lower Division Clerk	1
14.	Laboratory Attendant	2
	Total	23

NSRTC is especially designed for continuous dissemination of knowledge of seed and thereby improve skill, competency and scientific soundness of individuals engaged in seed development programme. NSRTC regularly organizes training on various aspects of seed for

the officials working in Seed Certification Agencies (25 in number), Seed Testing Laboratory (147 in number), Seed Law Enforcement Agencies, Agricultural Universities and other institutes dealing with seeds. The NSRTC, Central Seed Testing Laboratory acts as a referral lab under clause 4(1) of the Seeds Act, 1966. CSTL, NSRTC is testing more than 20,000 samples per year and performs at par with ISTA (International Seed Testing Association) with regard to seed testing net work in the country.

National Seed Testing Laboratory as Central Seed Testing Laboratory

The testing of seed material will be flowing from different State Seed Corporations as well as Seed Producing Organizations for physical purity, seed health and at later stage genetic purity that is mostly required in referral cases. At present the mandate of Central Seed Testing Laboratory (CSTL) is to receive 5% samples from seed producing organizations all over the country. In addition, CSTL act as a Nodal centre for coordinating the activities of Seed Quality Control programmes on behalf of Government of India in accordance with the Act and Rules with the State Notified Seed Testing Laboratories.

Grow Out Test

NSRTC have been allotted 10 hectares of land out of which the office premises have been constructed in about 2.5 hectares of land and remaining land have been kept reserve for organizing Grow Out Test for which Green House/Poly House and other necessary facilities have been created.

NSRTC is geared to go Global

NSRTC is a globally competitive Institute in Seed Science and Quality control, marching ahead with:

- > To promote the availability of quality seed to meet the challenges of Science based Agriculture.
- Making of promising Technologies reach the seed entrepreneurs and other stakeholders through innovative Trainings, Conferences, Workshops & Symposia.
- Establishing uniformity in Seed production & Quality Control programmes at National level.
- Innovative curriculum planning and implementation to make Seed Science & Research more vibrant and responsible to match the vision and needs of present and future.

Dr. M. P. Yadav Coordinator to Director

Post-Harvest Management for Seed Quality Assurance in Oilseeds & Pulses Crops

Dr. S. K. Goyal

Assistant Professor (S-3) Deptt. of Farm Engg., Institute of Agricultural Sciences, RGSC, Banaras Hindu University, Barkachha, Mirzapur – 231 001 (U.P.)

Abstract

In the significant advances that India made in agriculture in the last five decades, the role of the seed industry has been substantial. It is well established fact that the success of green revolution in India was a combination of high yielding varieties of seed and improved fertilizer usage. Globally, this is an exciting time to be in agriculture, particularly in the seed industry as seed being the foundation of successful agriculture, the demand for quality seeds of improved varieties are growing fast and adoption of new technologies around the world by the farmers is happening at an amazing pace. Therefore, production and supply of high quality seeds of improved varieties to the tiller of the land is a high priority in agricultural growth and development.

Introduction

India is the largest producer of oilseeds in the world accounting for more than 20% of the global area and 10% of the global production. Pulses, on the other hand, are one of the most important food crops globally due to its high protein content. India, in Pulses as well, accounts for the largest producer in the world. It is pertinent to note that, India exported 2,96,169.83 MT of pulses to the world worth Rs 2,116.69 Crores during the year 2020-2021.

Seed is a basic input in agriculture and it plays a crucial role in boosting up the productivity and economy of the country. Without the use of good quality seed, the investments, incurred on fertilizers, pesticides and water will not play dividend which ought to be realized. Therefore, the pace and progress in food production of a country, will greatly depend on the availability of required quantities of seeds of superior genotype and hybrids.

Quality seeds are inevitable to meet the challenges of ever-increasing population and food security. Being the carrier of technology, seed over the period of time evolved as the trade commodity. India being the 5th largest player in global seed market and a wide range of crop seed being produced under varied agro-climatic condition, there is a scope for up-scaling revenues through seed export. Seed quality assurance in India comes under the jurisdiction of the Seeds Act 1966, wherein quality seed must satisfy the requirements of Indian Minimum Seed Certification Standards (IMSCS), but under global scenario seed quality assurance system for seed export comes under the scope of Organization for Economic Cooperation and Development (OECD) standards and International Seed Testing Association (ISTA) methodology of seed testing.

Achieving self-sufficiency in oilseeds and pulses

With the view to enhance the production of oilseeds and pulses, the government has put in place – National Food Security Mission (NFSM). Under this mission, assistance is extended by the State Governments to farmers for interventions like cluster demonstrations on improved package of practices, demonstrations on cropping system, seed production and distribution of High Yielding Varieties/Hybrids, improved farm machineries/resource conservation machineries/tools, efficient water application tools, plant protection measures, nutrient management/soil ameliorates, cropping system-based trainings to the farmers etc.

Additionally, the mission also extended support to Indian Council of Agricultural Research (ICAR) and State Agricultural Universities (SAUs)/Krishi Vigyan Kendras (KVKs) for transfer of technology to the farmer under supervision of Subject Matter Specialists/Scientists. Besides, Rashtriya Krishi Vikas Yojana RAFTAAR (RKVY-RAFTAAR) provides provision for crop production related activities on oilseeds and pulses.

There has been a significant rise in the production of Oilseeds and Pulses in the country, due to government interventions and policies. In 2019-2020, production of oilseeds and pulses remained 33.22 million tonnes and 23.03 million tonnes, respectively. For the year 2020-21, production of oilseeds and pulses increased to 35.95 million tonnes and 25.46 million tonnes, respectively.

Seed quality control

Quality control is an important component of the seed programme. A seed programme without the provision of regulating the seed quality control measures may affect badly. There are two aspects of quality control. Firstly, the genetic purity of the seed maintained during the production and marketing. Secondly, it should have adequate qualities like high germination and physical purity, free from weed seeds, disease and hav eoptimum moisture content. Many parameters of the quality seed production are managed with good post-harvest management during seed processing.

Pulses in India

India grows such a variety of grain legumes which none of the countries in the world grows. There are nine major grain legumes (chickpea, pigeonpea, urdbean, mungbean, horse gram, moth bean, lathyrus, lentil and peas) which together account for more than 95% of the total area under pulses. There are 11 minor grain legumes viz. cowpea, broad bean, dry bean, rice bean, winged bean, adzuki bean, hyacinth bean, lima bean, jack bean, zombie pea and pillipesera, which are grown sporadically in isolated pockets. Grain legumes are an important source of dietary protein for many people in developing world with a protein content meanly twice as high as that in cereals. They are the cheap source of quality protein that complements the protein in cereals and thus enhances the nutritional value of cereal dominated diets. Green pods of many legumes, tender shoots and leaves and roots in few legumes are consumed as vegetables. The green stalks and dry straw form nutritious animal feed. Through symbiotic nitrogen fixation, legumes play significant role in low-input agriculture by reducing the dependence on nitrogen fertilizers. Thus, contribution of pulses to soil fertility is a key factor in sustaining the production of cereals in the rainfed dry areas in the developing world.

Constraints in quality seed production of pulses

Among major production constraints, availability of quality seed of improved varieties has been a major constraint in enhancing production and productivity of pulses in India. Despite a target of 10% of seed replacement rate we could not achieve even more than 7% at country level. This is primarily due to lack of organized seed production programme for pulses. Still, we do not have a proper medium term (4-5 years) seed rolling plan for major pulses producing states. The indent for breeder seed is quite low in many cases and that too is for old varieties. There is poor conversion of breeder seed to foundation and certified seed. Even true picture of conversion of breeder seed to foundation and certified seed is not available for most the states. To insure timely availability of quality seed, capabilities of seed production must be enhanced with introduction of contractual obligation component by involving seed societies, farmers, private sectors, FPOs and NGO's besides SAU's, Seed hubs of oilseeds & Pulses (at KVKs), IIPR and State Seed Corporations. Participation of growers in seed production should be encouraged by way of simplifying the registration and seed certification procedures.

Chickpea: Chickpea is grown on about 8.75 million ha covering almost all agro-ecological zones of the country and the maturity period varies (95-170 days) among zones. Therefore, it is imperative to produce the seed of a particular variety in its area of recommendation or in nearly states. The production levels and quality of seed produced is usually better in central and northern India than the coastal areas of the country. The fields free from weeds, diseases, salinity and water logging ensure better quality of nucleus and breeder seed of high yielding varieties.

Mungbean: Since, mungbean can mature just in 60-70 days in most of the seasons and area, area is increasing in northern India as summer/ spring season crop between wheat and rice or after potato and rapeseed-mustard. The Overall demand for breeder seed of mungbean has increased considerably. For example, mungbean has tremendous potential for cultivation in Rajasthan and it has shown impressive area coverage from 3.66 lakh ha in 1991-95 to more than 9.80 lakh ha in 2009-10. Uttar Pradesh has shown positive growth rate for area under spring/summer whereas Maharashtra has also shown a significant increase in area in kharif season in during last 10 years.

Urdbean: Urdbean is the third most important pulse crop of India cultivated over a wide range of agro climatic situations. The major urdbean growing states of the country are Maharashtra, Andhra Pradesh, Madhya Pradesh and Tamil Nadu. Development of short duration, photo-thermo-insensitive and disease resistant varieties has led to its cultivation as a sole or intercrop during spring season in north India and as a sole relay crop during rabi season in the rice fallows of the coastal peninsular India. Uttar Pradesh has shown progressive increase both in area and production. This occurred mainly due to the popularization of high yielding varieties and improved production technology. The demand for quality is increasing in most of the states.

Pigeonpea: Pigeonpea is a hardy, widely adapted and drought tolerant crop with a large temporal variation (90–300 days) for maturity. These traits allow its cultivation in a wide range of environments and cropping systems. In India, pigeonpea area and production have increased about 70% and 75%, respectively since 1950-51. However, productivity (~ 8 q ha⁻¹) has remained almost the same. During the period, traditional long-duration types (mostly grown in northeastern plains) have been continually replaced by short- (northwest plains, central and southern India) and medium duration (mostly central and southern India) varieties. These varieties although improved in per day productivity are low yielder compared to long-duration types. This is one of the reasons why no breakthrough has been realized in the productivity of pigeonpea. The indirect impact of these improved early and medium varieties has been on enhancement of overall crop intensity. Bihar ranks first in productivity (12-12.5 q/ha). South and central zones which account for nearly $2/3^{rd}$ of the total area have productivity even lower than the national average yield. Since, pigeonpea crop is often cross pollinated (6-35% cross pollination), it becomes difficult or almost impossible to maintain genetic purity of seed at farm level. Therefore, systematic seed production programme for high yielding varieties involving farmers and other stakeholders is of paramount importance for this crop because it may not be possible for government agencies to produce and supply quality seeds every year for huge area. Best practices to ensure quality seed production

Production of high-quality seed is fundamental to modern agriculture. Most annual crops are established each season from seeds, and seed quality can have a major impact on potential crop yield. Seeds can serve as the delivery system not only for improved genetics but

6

also for new planting and production methods and crop protection strategies that improve the overall efficiency of agriculture and reduce its environmental impact. The purity of any commercial product propagated by seed begins with the genetic purity of the seed planted. Genetic purity standards have been established by state seed laws and seed certification agencies to assure growers that the seed they buy is accurately labelled with the correct crop and variety. Seed purity standards also specify the percentage of contamination by seeds or genetic material of other varieties or species. The physical purity of seed refers to the presence and identity of weed seeds, and the percentage of other materials such as dirt or plant residues. In addition, the germination capacity of the seed in a standard test must be shown on the label. In some cases, seeds must also be tested for the presence of seed-borne diseases, and hybridity tests are conducted to confirm parentage in hybrid seed. Production of highquality seed is an exacting task. Seed producers take many steps to protect genetic integrity, including ensuring the integrity of their planting seed, properly identifying and labelling plants and fields, planting seeds on clean land which has not been used to grow the same crop in the recent past, removing rogue plants, or plants which are not true to the variety's characteristics, and employing physical isolation - via net houses, distance isolation, time isolation or hand pollination - to ensure that pollination only occurs among plants of the desired variety. To maintain the quality of seeds following points should be keep in mind:

1. Maintaining genetic purity

- 2. Maintaining proper isolation distance
- 3. Hybridity and varietal purity tests

4. Seed enhancement

Seed quality or seed enhancement refers to various technologies used to increase the consistency in performance of the seed with respect to its vigour, leading to improved crop yield and quality of produce. In recent times with the availability of scientific information of various physiological aspects of the seeds and seed enhancement technologies in ensuring better protection against diseases and insect pests at seed or seeding stage, improve seed vigour and modify seed emergence capabilities, it has become easier to enhance seed quality before its sowing to ensure higher yield with better quality produce. We all are aware of the pulses seed treatment with recommended fungicides and insecticides besides inoculation with rhizobium or PSB culture. Some of the other technologies becoming popular are listed below.

(a). Seed coating: The application of materials on the seed surface to minimize diseases and insect pest incidence is mainly related to seed coating. The chemicals or bio-agents such as fungicides, insecticides, *Trichoderma* etc. are normally used for seeds coating of seeds of pulse crops. In developed countries film coating, in which the active ingredient is applied in a quick-drying polymer film around the seed, has gained popularity. A major advantage of film coating of the seed is that it ensures reduced loss of active material from the seed during seed transport and handling. This can be of value for rajmash and soybean seed in India, where losses in germination has been observed during transportation.

(b). Seed pelleting: The technology is used to alter the seed surface properties to enable more precise seed singulation during sowing through seed drills and placement in the soil through other means. This helps in ensuring proper plant populations and avoids clustering of seedlings. Seed pelleting can also be used to deliver a range of beneficial additives like microorganisms, micronutrients and plant protection agents e.g., trichoderma for pulses seeds. This technology can be of immense value for the crops like mungbean, urdbean, mothbean, clusterbean, cowpea, lentil, etc.

7

(c). Seed priming: Seed priming is being used to enhance germination at fast rate and overcome seed dormancy. In seed priming, seeds are hydrated in a controlled manner to provide enough water to initiate the physiological processes of germination (imbibitions), but not enough to allow germination. After soaking of the seeds in desired or recommended solution these are allowed to dry and sowing is done in usual way. These primed seed ensure rapid and uniform germination from the soil compared to non-primed seed of the same seed lot. These differences are greatest under receding soil moisture or poor moisture retentive soils. Seed priming can be of utmost importance in lentil or chickpea when sowing is to be done as utera/paira or under late sown conditions as zero tillage. Even under late sown condition, primed seeds of chickpea and lentil helps in good growth and development of biomass.

5. Proper storage conditions for quality seeds

The storage of seeds in coastal or high humid area is a difficult task. For most of pulses, high quantity of seed is required for sowing in unit area; it becomes further difficult to store seeds in humid areas. Therefore, government should take initiative to develop infrastructure for safe storage of seeds and also maintains minimum stock for regular as well as contingent plan. **Post-harvest operations for quality seeds**

In order to preserve oilseeds and pulse crops with high yield, seeds must be stored. Numerous biological and non-biological processes cause significant losses of these seeds during storage. Careful post-harvest handling practises can help preserve the quality of seeds. In order to minimise loss and maintain the quality and safety of these crops, it is necessary to design the most appropriate procedures for assessing losses that occur during the process. The goal is to produce high-quality seeds that fulfil both national and international standards and might satisfy the supplier's needs. The post-harvest practises and factors that are employed to preserve seed quality are highlighted here.

Objectives of PHM of oilseeds & pulses seed processing

Seed processing is done to improve the seed quality by removing foreign objects, inert materials, small seeds, weed seeds, deteriorated and damaged seeds and by providing chemical protectants to the seed to improve its planting circumstances. As a result, seed processing is crucial to:

- Enable uniform planting through correct size and the removal of seed appendages that obstruct planting.
- Boost seed marketing by enhancing product quality and preserving dependable seedplanting standards.
- Remove weed seed from crop seed to stop the spread of weeds.
- By eliminating contaminated seed from clean seed, you can improve crop quality.
- Use chemical treatments to protect crops from pests and illnesses.
- Reduce seed losses by drying seeds and reducing moisture content.
- By providing storage from the time of harvest until the seed is required for planting, you can promote uniform marketing.

S.	Crop	Harvesting	Threshing	Drying	Processing/Grad	Seed
No.		_	_		ing/	standards
					Storage	
			OILSEE	DS		
1	Groundnu	When the	Stripping:A	The pods	Groundnut pods	Physical
	t (Arachis	crop matures,	fter	should	are stored as	purity
	hypogaea)	the older	harvesting	be dried	such till next	(min) 96%,
		leaves will	the	under	sowing. The	Germinati
		dry and fall	groundnut	the sun	seeds can be	on (min)
		off, top	pods are	to have	stored viable up	70% and
		leaves will	removed	less than	to 18 months.	Moisture
		start	from the	9%	Pods should be	(max) 9%
		yellowing	plants. This	moisture	stored in gunny	
		and the inner	is called	content.	bags lined with	
		side of the	stripping.		polythene. Few	
		pod will turn	The pods		pieces of	
		black and the	are		camphor should	
		seeds inside	removed by		be added in the	
		will move	picking or		bag to preserve	
		freely. Soil	flailing		the seeds. Pods	
		moisture	(beating) on		can also be	
		level is very	the ground.		mixed with	
		critical			neem leaves (@ 2	
		during			kg/400 kg seeds)	
		harvesting.			to act as a	
		The bunchy			repellent for	
		varieties are			storage pests.	
		harvested by				
		hand				
		whereas the				
		spreading				
		varieties by				
		digging,				
		ploughing or				
		with the help				
		of a blade-				
		harrow.				
		Groundnut				
		should be				
		harvested in				
		bright				
		sunshine.				
2	Sesamum	Harvesting	Ihreshing	The	Method-I:Seeds	The
	(Sesamum	should be	is carried	harveste	are dried under	percentage
	orientale)	done when	out	d plants	the sun for 3-4	ot physical

Table-1: Post-harvest techniques for oilseeds and pulses seed production (Thooyavathy*et al.*,2013)

9

		75 - 80% of	manually	are	days to reduce	purity of
		the pods	by beating	stacked	the moisture	foundatio
		become	the capsules	upright	content to 5-6%	n and
		brown in	with pliable	in the	before storage.	certified
		colour and	bamboo	threshin	After proper	seeds
		few at the	sticks. The	g vard	drving the seeds	should be
		bottom have	seeds	for a	should be mixed	97% with
		dehisced	removed	period of	with activated	80% of
		(burst open).	from the	three	clay @ 1 kg/100	germinatio
		The moisture	pods are	days.	kg of seeds.	n capacity
		content of the	graded	This will	Seeds are then	and 9% of
		pods and	using round	help the	stored in gunny	moisture
		seeds will be	perforated	immatur	bags or bins.	content.
		50 – 60% and	metal sieves	e pods in	Seeds can be	The
		25 - 30%,	of 5/64″	the	stored upto one	maximum
		respectively.	size.	terminal	year under open	presence
		For black		edge to	storage	of seeds of
		seeded		mature	conditions.	other
		variety,		and also	<i>Method-II</i> :Dry	crops and
		check the		help in	to safe moisture	weeds
		colour of the		drying of	level of 7-8% and	should be
		seeds in the		the pods.	store in	10/kg for
		10th capsule		The	polythene lined	foundatio
		from the		moisture	bags in cool dry	n and
		bottom of the		content	store. For safe	20/kg for
		crop. If the		of the	long-term	certified
		seeds are		pods will	storage, sesame	seeds.
		black in		reduce to	seed should be	
		colour then		9%.	clean, have	
		harvest			moisture content	
		should be			not more than	
		done.			6% and stored at	
		Delaying			a relative	
		harvest may			humidity of	
		result in			approximately	
		yield loss.			50% and at cool	
					temperature.)	
3	Sunflower	Sunflowers	The	After	Seeds dried to	The
	(Helianthu	should be	harvested	threshin	optimum	percentage
	s annuus)	harvested	heads are	g seeds	moisture content	of physical
		when the	dried under	are field	are graded using	purity of
		backside of	the sun for	dry in	9/64" round	foundatio
		the flower	a couple of	sun and	perforated sieve	n and
		heads turns	days to	collect	as middle sieve	certified
		lemon yellow	reduce the	the seed	using OSAW	seeds
		from green.	moisture	after	cleaner cum	should be
		After	content to	grading	grader.	98% with

		anthesis in	15 - 18%.	with 7	Seeds can be	70% of
		about 40 – 45	After this	mm	stored in gunny	germinatio
		days the	the seeds	sieve.	bags for up to 10	n capacity
		heads will	are	Dry to 9-	months and in	and 9% of
		mature.	removed	10%	700 gauge	moisture
		Heads are	from the	moisture	polyethylene	content.
		harvested in	heads by	, with	bags for about 15	
		one	hand	stirring	– 18 months.	
		picking.Mech	threshing or	frequentl	(Seed storage:	
		anical	mechanicall	y.	Store under cool	
		damage	y using	-	and dry	
		during	sunflower		conditions	
		threshing	thresher.		packed in	
		should be			moisture proof	
		avoided.			container)	
4	Mustard	Harvesting	The	Seeds are	Threshed seeds	The
	(Brassica	should be	harvested	dried	are cleaned by	minimum
	sp.)	done when	plants are	under	winnowing and	Purity of
		75% of the	heaped and	the sun	sieving using	foundatio
		pods become	dried under	to attain	suitable size of	n and
		golden	the sun for	8% of	sieve.	certified
		yellow in	4 – 5 days to	moisture	Seeds and can be	seeds
		colour. The	attain 12 –	content.	stored in gunny	should be
		moisture	13% of	This is	or cotton bags	97% with
		content of the	moisture	safe for	upto one year	85% of
		seeds will be	level for	mustard	under open	minimum
		25% in this	uniform	seeds.	storage	germinatio
		stage.	maturation		conditions.	n capacity
		Delaying	of seeds.			with 8%
		harvest may	This is			of
		result in	called			maximum
		yield loss.	swathing.			moisture
		The crop is	During			content.
		harvested at	swathing			Presence
		the level of	the			of other
		lowest pods.	immature			distinguis
			pods with			hable
			green seeds			variety in
			mature.			toundatio
			Threshing			n seed
			is done			should be
			after 10 – 12			0.10% and
			days by			certified
			nand using			seed
			STICK.			snould be
						0.50%.
	1	1	1	1	1	

ſ

5	Safflower	Harvest at	Thresh the	Seeds	Processed and	The seed
	(Carthamu	about 120 to	seed either	should	dried seeds	samples of
	s tinctorius	125 days	by beating	be dried	should be	hvbrid
	L.)	after sowing	with stick	up to 7-	packed in bags	should be
		in hot <i>rabi</i>	or with the	8%	and stored in a	subjected
		areas	help of	moisture	safe place	to
		(Telanagana,	bullock	content	sure price	standard
		AP.	drawn			physical
		Karnataka.	stone roller			purity
		Maharashtra,	or tractor.			tests
		Odisha) and				before
		140-145 days				distributio
		in cooler rabi				n.
		areas (MP,				
		Chhattisgarh,				
		UP, Bihar).				
		In hybrid				
		seed				
		production				
		plots, harvest				
		the male				
		rows first,				
		and then				
		female rows.				
		After				
		completing				
		threshing of				
		seed from				
		male rows				
		thresh seed				
		from female				
		rows.				
		Combine				
		should be				
		should be				
		care and				
		cleanliness in				
		harvesting of				
		hybrid seed				
		to avoid seed				
		contaminatio				
		n with seed				
		from other				
		safflower				
		field.				
		Harvesting				

ſ

		should be				
		done				
		manually in				
		the early				
		hours of the				
		day Wran				
		used guppy				
		bags around				
		bags around				
		avoid				
		pricking of				
		spines				
		spines.	PULSE	S		
1	Greengra	Harvest is	Harvested	Processe	Then seeds	Physical
	m and	done soon	pods along	d and	should be mixed	purity of
	Blackgram	after the	with plants	graded	with 3% neem	foundatio
	(Viona	maturation of	are dried to	grains	seed kernel	n and
	radiata and	the seeds.	a moisture	are	power to	certified
	Viona	Seeds attain	content of	further	preserve the	seeds
	mungo)	physiological	12 – 13%	dried to	seeds from	should be
		maturity 30	and then	attain 9%	storage pests	98%.
		days after	threshed	of	especially	minimum
		50%	using sticks	moisture	infestations of	of 75%
		flowering	Threshed	content	the bruchid	germinatio
		The mature	grains are	content.	beetle	n and 9%
		nods turns	cleaned and		beene.	of
		brown At	dried to m			moisture
		this stage the	c of 8 - 9%			content
		moisture	The seeds			Presence
		content of the	are graded			of other
		pode will be	using BSS 7			distinguis
		17 18%	v 7 wiro			hablo
		17 - 10 /0.	moch siovo			variation
			mesn sieve.			should be
						10/kg for
						10/ Kg lor
						roundatio
						for for
						for
						certified
						seed
	6	TT	TT . 1	D	0 1 1	20/kg.
2	Cowpea	Harvest 1s	Harvested	Processe	Seeds can be	Physical
	and Soya	aone soon	pods of	d and	stored for a year	purity of
	bean	after the	cowpea and	graded	under open	certified
	(Vigna	maturation of	whole	grains	storage	and
	unguiculat	the pods. In	plants of	are	conditions. The	toundatio
	a and	cowpea the	sova bean	turther	seeds should be	n seeds of

 Chucino	maturad	and dried	dried to	mixed with 2%	00117000
Giyeine	matureu	are uneu	attair 0%	mixed with 5 %	cowpea
mux)	pous will be	under the	$\frac{110}{9}$	neem seed	
	straw yellow	Sun light.	and 12%	kernel power to	bean
	in colour and	Dried pods	01	preserve it from	should be
	harvested by	are beaten	moisture	storage pests	98% with
	hand picking.	with	content	especially	maximum
	Since	bamboo	tor	intestations of	germinatio
	flowering is	stick to	cowpea	the bruchid	n capacity
	continuous in	remove the	and soya	beetle. Seeds can	of 75% for
	cowpea, pod	seeds. Seeds	bean,	also be treated	cowpea
	setting is also	be cleaned	respectiv	with activated	and 70%
	continuous.	by	ely.	clay @ 1 kg/100	for
	Harvesting is	winnowing.		kg of seeds.	soybean
	done	The seeds			seeds of
	periodically	of soya			both
	as and when	bean and			certified
	the pods get	cowpea are			and
	mature. In	graded			foundatio
	soya bean,	using			n. M.C.
	seeds attain	14/64'' and			should be
	physiological	10/64″			9% for
	maturation	round			cowpea
	23 - 25 days	perforated			and 12%
	after	metal			for
	anthesis.	sieves,			soybean
	Maturation	respectively			and the
	can be				presence
	confirmed by				of other
	vellowing of				crop seeds
	the plant and				for
	browning of				foundatio
	the pods.				n seeds
	This crop				should be
	should be				5/kg and
	harvested at				certified
	once node				seeds of
	intact along				cowpea
	with the				should be
	nlant				$\frac{10}{k\sigma}$
	plant.				whoreas
					for source
					boan it
					should be
					$\frac{10}{ka}$
					10/ Kg and 10/1/2
					40/ Kg.

3	Rodoram	The grop	Harwootod	Soude of	Souds can be	Physical
5	(Cajanus	reaches the	node are	different	stored for up to	nurity of
	(Cujunus caian)	physiological	dried under	colour	one year under	cortified
	cujunj	maturity in	the sup for	and sizes	open storage	and
		32 - 38 days	a week The	should	conditions and	foundatio
		after anthesis	dried pode	ho	for 15 months in	n soods
		in winter and	are bester	romovod	700 gaugo	should be
		summer	with	Temoveu	nolvethylene	98% with
		respectively	hamboo	· Processe	bage The soude	minimum
		Harvesting	stick to	dand	should be mixed	germinatio
		takes place	sonarato the	graded	with a powder	n canacity
		soon after the	seeds Seeds	seeds are	of neem and	of 75%
		maturation of	be cleaned	further	vites and rinds	The
		seeds	by	dried for	of the fruits of	maximum
		Matured	winnowing	safe	Sapinduslaurifol	moisture
		pods should	and graded	storage	ius	content
		be harvested	using	storage.	(Punthikottai)	should be
		in 2-3	10/64'' (BSS		and Acacia	9% The
		pickings.	5x5) round		concinna (soap	presence
		Harvest	perforated		nut) in 1:100	of other
		should not	metal		ratio. Seeds can	crop
		coincide with	sieves.		also be treated	variety
		rains.			with activated	should be
		because it			clay @ 1kg/100	10/kg for
		will result in			kg of seeds to	foundatio
		off coloured			control bruchid	n and that
		and dimpled			infestation.	of certified
		seeds.				seed
						should be
						20/kg of
						seed.
4	Horsegra	The crop	Harvested	Seeds are	Seeds with this	Minimum
	m	reaches the	plants are	graded	moisture content	physical
	(Macrotylo	physiological	dried under	using	can be stored for	purity of
	та	maturity in	the sun and	8/64″ or	up to one year	the
	uniflorum)	25 - 30 days	threshed by	3.1 mm	under open	certified
		after	beating	round	storage	and
		flowering.	with a	perforate	conditions.	foundatio
		The	pliable	d metal		n seeds
		maturation	bamboo	sieve.		should be
		can be	stick to	Seeds of		98% with
		visually	separate the	different		minimum
		identified by	seeds. The	colour		germinatio
		colour	seeds	and sizes		n capacity
		change of the	should then	and		ot 80%.
		pods and the	be cleaned	broken		The .
		crop from	by	ones		maximum

National Training on "Quality Seed Production of Oilseeds & Pulses", December 12-16, 2022 National Seed Research & Training Centre, Varanasi (U.P.)

green to	winnowing.	should	moisture
straw yellow		be	content
colour. The		removed	should be
pods are			9%. The
harvested		Processe	presence
intact with		d and	of inert
plants and		graded	material
dried in the		seeds are	should not
threshing		further	exceed 2%
yard.		dried for	and other
		safe	crop seeds
		storage.	should be
		The	5/kg for
		seeds	foundatio
		should	n and
		have the	10/kg for
		maximu	certified
		m M.C.	seeds.
		of 8%.	

Fig-1.: Steps involved in oilseeds and pulses seeds processing

Quality assurance

Quality assurancemeans different things to different people. For people working withseed certification programs, it meansbeing sure that the seed is inspected forgenetic variability in the field, in the laboratory, and, after certification iscomplete, through grow-out tests. Forseed analysts it means conducting tests assure trueness-to-type, freedomfrom contamination, and the ability toproduce normal, healthy plants in the field. Several state seed certificationagencies have set up specialized programsfor quality assurance and areproviding this service to the seed producers.

Most quality assurance programsbegin during seed production in the field. The use of high-quality, geneticallypure planting seed, proper isolation distances, and weed and crop-freesoil are all beginning steps in a quality-assurance program. Using the proper seeding rates, row spacing, fertility levels, and irrigation scheduling is essential in producing highquality seed.

A seed has its highest quality whenit is physiologically mature. This stage of development usually is defined as that point during development when theseed has attained

maximum dry weight. The quality of the seed at physiological maturity depends on the environment prevailing during seed development. These producer can control some of the environmental factors that affect quality, such as soil moisture, fertility, disease and insect stresses, and uniformity of stand.

Once the seed has been separated from the mother plant by the formation of an abscission layer, its quality isinfluenced by the environment, and deterioration begins. Oilseeds and pulses crops can be damaged easily during harvesting, threshing, dying, processing and handling. Factors such as moisturecontent during harvesting, mechanical damage during combining, and improper drying techniques all canlead to poor-quality seed. This damagecan cause loss of vigour and/or viability, making the seed unusable for planting purposes. To prevent quality losses, measures have developed for quality assurance to evaluate, monitor, and minimize the loss of quality.

Quality assurance measures require systematic sampling and testing of the seed during production, conditioning, and storage. During seed production, a seed sample should be takenwhen the crop has reached physiologicalmaturity. This sample is used to establish he level of quality and the seedmoisture content before harvesting and conditioning. Once the propermoisturecontent has been reached for harvesting, another seed sample should betaken. This sample will indicate if seedquality has been lost.During harvesting, the seed should bechecked for cracked or broken seeds todetermine that the harvest equipment isproperly adjusted. There are several quicktests that can be used in the field to checkseed damage. Once the harvestingequipment has been adjusted properly, a sample should be taken to assess thequality after harvesting and to checkseed moisture again. If the seed moisturecontent is not acceptable for temporarystorage the seed must be driedbefore seed conditioning, preferably atlow temperature to avoid loss of viabilityand vigour. After drying, a seed sampleshould be taken to determine if seed hasbeen damaged during drying. Oftenseed is not conditioned immediatelyand is put into temporary bulk storage. Movement into bulk storage usually requires the use of an elevator, which can damage the seed, therefore, a seed sample should be taken to determine ifquality is lowered.

Seed conditioning is an essentialstep in making seed of genetically superiorcultivars available to crop producers.Some objectives of seed-conditioningare to remove contaminants,upgrade quality, improve plantability,apply seed treatment, and package theseed (Fig. 2). Each of the steps in thisflow diagram requires specialized equipment that performs specific conditioningfunctions. However, as the seedpasses through each piece of equipment,it can be damaged. Consequently, aseed sample should be taken at each point along the way to assure that a pieceof equipment is not reducing quality.

Fig-2. Basic diagram showing essential steps in seed conditioning (Vaughan et al., 1968)

Vigour tests

Several vigour tests have been developed over the years to measure seed performance under a wide range of field conditions. These tests also may be applicable to predict seed storage (Roos, 1989). The basis for vigour testing is the assumption that seeds undergo a sequential loss of cell function, which culminates in the loss of germinability (Fig. 3). While this scheme provides a simplistic illustration of what is thought to occur, the exact sequence

of events is not known. Exact procedures for conducting most of these tests have been summarized in the Seed *Vigour Testing Handbook*, published by AOSA (1983).

Fig-3. Probable sequence of changes in seed during deterioration (Delouche and Baskin, 1973)

The work of a quality-assuranceprogram is not completed when theseed is put into storage. If seed remains storage more than a few months, itshould be sampled and checked todetermine if its vigour or viability haschanged. It is also important that all storage areas be kept free of insects and rodents. The quality-assurance program, as outlined, creates a large amount of data that can be helpful in determining where and why seed quality has beenlost. When samples are evaluated using the various tests outlined above, a seed producer can make the necessary modifications in their production practices, conditioning procedures, and storage facilities to produce and maintaina high-quality seed.

Conclusion

Post-harvest management and seed quality preservation are the two viewpoints in seed industry that require the most focus. Though, significant progress has been made in recent years in the development of processing techniques, novel packaging, storage, and transport systems, pest control, and seed-borne disease management for market access. Researchers have to make an effort to develop integrated strategies for seed post-harvest management to obtain quality seed to meet national and international standards. To preserve seeds for extended periods of time without affecting their genetic makeup, seed biologists should attempt to further their research. For higher-quality harvests, seed quality needs to be preserved. These days, the main issue in developing nations is seed maintenance. Better postharvest handling and seed storage techniques must be developed in order to be more cost-effective, practical, and effective.

References

- AOSA (1983). Association of Official Seed Analysts. Seed Vigour Testing Handbook. Springfield, Ill. AOSA Contrib., 32.
- Aski, M.; Chaturvedi, S.K. and Mishra, N. (2013). Quality seed maintenance of pulses in view of resource conservation agriculture.
- Bhaskaran, M. and Vanangamudi, K. (2002). Principles of Seed Production and Quality Control. Department of Seed Science and Technology, Tamil Nadu Agriculture University, Coimbatore. pp. 365
- Delouche, J.C. and Baskin, C.C. (1973). Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci. Technol., 1:427-452.
- http://agropedia.iitk.ac.in/content/quality-seed-production-pulses
- https://extension.psu.edu/cleaning-and-storage-of-oilseed
- https://newsonair.com/2022/03/30/high-rise-in-oilseeds-pulses-production-due-to-national-food-security-mission/
- Mandal, A.B.; Sinha, A.K. and Natarajan, S. (2010). Nucleus and breeder seed production manual. Directorate of Seed Research (DSR) Kushmaur, Mau (UP), pp. 66-70.
- Nadarajan, N. (2011). Vision 2030. Indian Institute of Pulses Research (IIPR) Kanpur (U.P.), pp. 1-2.
- Package of organic practices from Maharashtra for Cotton, Rice, Red gram, Sugarcane and Wheat, June 2006. Maharashtra Organic Farming Federation (MOFF), Pune, pp. 112.
- Package of organic practices from Tamil Nadu for Rice, Groundnut, Tomato and Okra, September 2006. Centre for Indian Knowledge Systems, Chennai, pp. 174.
- Package of organic practices from Uttaranchal for Chilli, Mustard, Potato and Soybean, June 2006. The Institute of Himalayan Environmental Research and Education, Uttaranchal, pp.102.

- Package of organic practices from west Bengal for Brinjal, Rice, Sesame and Taro, June 2006. Development Research Communication and Services Centre, Kolkata, pp. 135.
- Rajendra, P.S. (2016). The International Certificate Course "Requisites of seed production, processing, testing and quality assurance" organised by Directorate of Seed Research (DSR) from 20 July 2015 to 20 January 2016 at Directorate of Seed Research, MaunathBhanjan, Mau (UP).
- Roos, E.E (1989). Long-term seed storage, p. 129-158. *In*: J. Janick (ed.). Plant breeding reviews. Timber Press. Portland, Ore.
- Thimmaiah, A. (2006). Natural Agro-consultants. Current state of inputs for organic agriculture, Faridabad, pp.122.
- Thooyavathy, A.R.; Sridhar, Subramanian, S.K. and Vijayalakshmi, K. (2013). Seed Production Techniques for Oilseeds and Pulses. Centre for Indian Knowledge Systems (CIKS) Seed Node of the Revitalising Rainfed AgricultureNetwork, Chennai, pp. 1-19.
- Tonapi, V.A.; Arunkumar, M.B. and Manjunath Prasad, C.T. (2011). Seed Quality Assurance: A Training Manual. National level Training on "Seed Quality Assurance" for officials of Seed Industry, 22-26November, 2011. Division of Seed Science & Technology, Indian Agricultural Research Institute, New Delhi - 110 012, 249 p.
- Vaughan, C.E.; Gregg, B.R. and Delouche, J.C. (1968). Seed Processing and Handling. Seed Technology Laboratory, Mississippi State Univ., State College. Hdbk. 1.

www.agritech.tnau.ac.in

www.seedtamilnadu.com

www.sikkimagri.gov.in

National Seed Research & Training Centre G. T. Road, Collectry Farm, Varanasi- 221106 (U.P.) Tel: 0542 2370222 ·mail: <u>dir-nsrtc-up@nic.in</u> Website: www.nsrtc.ni